
Journal of Computational Physics 198 (2004) 617–627

www.elsevier.com/locate/jcp
Arbitrary-pressure chemical vapor deposition modeling
using direct simulation Monte Carlo with nonlinear

surface chemistry

Husain A. Al-Mohssen, Nicolas G. Hadjiconstantinou *

Mechanical Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Received 9 September 2003; received in revised form 19 January 2004; accepted 21 January 2004

Available online 6 March 2004
Abstract

We present a methodology for simulating chemical vapor deposition (CVD) which uses the direct simulation Monte

Carlo (DSMC) method to capture gaseous phase transport in a wide Knudsen (Kn) range. This work bridges different

CVD simulation methods developed for the Navier–Stokes (Kn ! 0) and ballistic (Kn ! 1) regimes. Our methodology

incorporates a nonlinear surface chemistry model as well as a level set based profile evolution formulation which ac-

curately captures complex boundary evolution, and is capable of accurately predicting surface growth for arbitrary

complex geometries and surface chemistry for a wide range of Knudsen numbers. The proposed approach is validated

by comparing its predictions to existing numerical results in the ballistic (Kn ! 1) and diffusive (Kn � 1) regimes.

� 2004 Elsevier Inc. All rights reserved.

1. Introduction

Chemical vapor deposition (CVD) is a process of considerable practical importance [11]. Reliable

simulation techniques can reduce production costs and improve product quality by reducing the trial and

error associated with process optimization while keeping the need for costly experimental facilities to a

minimum. Although such simulation techniques exist for the limiting cases when the molecular mean free

path is much smaller or larger than the characteristic feature scale, satisfactory solutions which include

arbitrary surface chemistry and level set surface evolution models for the more general (and considerably
more challenging) problem of arbitrary mean free path do not exist. This paper reports on the development

of such a method.

Gaseous transport above the feature surface plays a key role in determining the shape and physical

properties of the deposited layer. A key parameter in characterizing gaseous transport is the ratio of the
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mean free path of the gas molecules to a characteristic surface dimension known as the Knudsen number

Kn [2] . In this work the Knudsen number was defined as Kn ¼ k=L, where L is the initial trench mouth

width. At low values of the Knudsen number (Kn ! 0), linear gradient transport holds and the standard
multi-species Navier–Stokes (NS) equations accurately predict the flow characteristics [6,7]. At the other

extreme (Kn ! 1), no gas–gas collisions take place and transport is ballistic [1,4,5]. In the regime

0:1 K Kn K 10 (known as the transition regime), no simplifying assumptions can be made and only the full

Boltzmann equation accurately describes the transport [2,3]. Our methodology uses the direct simulation

Monte Carlo (DSMC), a molecular simulation method shown to provide accurate solutions of the

Boltzmann equation [27], to provide accurate description of gaseous transport in all Knudsen regimes.

However, it should be noted that in the Kn ! 0 limit solutions based on the Navier–Stokes description are

more practical and significantly more efficient [2].
Previous attempts to model CVD using the DSMC method [9–12] suffer from one or more of deficiencies

such as, crude surface evolution models, crude DSMC implementations, high statistical scatter and lack of

verification. This last consideration is, in fact, very important since a number of simplifying assumptions is

made when developing these simulation models and especially after considering the fact that previous

approaches either predict trends that are inconsistent with solutions in the Kn ! 0 or Kn ! 1 regimes, or

make use of simplifications that are too crude. A simple Monte Carlo approach based on a random walk

model has also been proposed [8]; although such a model may be sufficiently accurate for some purposes,

the approximations involved make it unclear whether it can be reliably used throughout the entire Knudsen
range.

In this paper we discuss our approach towards developing a reliable CVD model based on DSMC which

incorporates for the first time both a nonlinear surface chemistry and a level set surface evolution model.

The surface chemistry and level set approaches are briefly described in Section 2. Moreover, our meth-

odology is extensively tested and is shown to capture the predictions of established solution methods in the

Kn � 1 and Kn ! 1 limits. In the absence of transition-regime experimental data suitable for validation

purposes, the above tests form an alternative numerical validation procedure (recall that DSMC is known

[2] to correctly capture transport in all Knudsen regimes).
Our work follows [1] in assuming that gas phase chemistry is negligible, although methods of incor-

porating homogeneous reactions in the DSMC transport model have been developed [2,24]. Surface

chemistry is typically modeled through the use of a sticking coefficient (Sc), defined as the probability that a

molecule colliding with the reactive surface is absorbed and reaction follows. Previous transition regime

models have usually used a sticking coefficient that is constant in space (all points on the surface have the

same Sc) and time, despite ample evidence to the contrary [13]. In our work we have developed and in-

corporated a variable sticking coefficient concept appropriate for DSMC.

Collisions between particles and the evolving growth surface are handled by an algorithm that decouples
the interface discritization size from the DSMC timestep. The algorithm is described in Section 2.1.

Another key challenge in CVD modeling is finding methods to robustly and efficiently represent and

model feature surfaces in both two and three dimensions. To date, transition regime CVD models have used

fairly basic representations of the deposition film that are either unphysical or not easily extended to three

dimensions. In this work we capture film growth through a level set approach that avoids many of the

disadvantages of simpler approaches (for a discussion see [19]).
2. Outline of methodology

A key typical assumption in computational CVD studies is that the gas transport characteristic timescale

is significantly shorter than the timescale associated with the deposition boundary movement. Conse-

quently, the deposition process can be split into two distinct steps, namely the calculation of the deposition
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rate caused by the gas transport and the evolution of the growth surface. The following sections outline the

major components of these sub-models; further details (along with implementation details and a discussion

of some of the caveats) can be found in [14].

2.1. DSMC gas transport and deposition model

DSMC was invented by Bird in the 1960s as a method of solving the Boltzmann equation for a wide

variety of conditions [2] and was recently proven to provide accurate solutions of this equation in the limit

of infinitesimal discretization. The DSMC method is fairly well documented (see, for example [2,15,16]); as

a result, we will only discuss aspects of our implementation that are special or non-standard.

Fig. 1 shows a sketch of the domain, DSMC cell grid and domain boundaries. The collision cells are
rectangular and of equal size, while the deposition surface is discretized into short straight segments of an

arbitrary length and number. In the figure, the initial boundary is shown as well as a schematic of the

evolving boundary after finite time. Our discretization approach was chosen because it affords great flex-

ibility in developing an efficient method that can be applied to a wide range of Knudsen numbers. Because

the cell linear size ðDxÞ and DSMC timestep (Dt) are not coupled to the growth surface representation, they

can be chosen to achieve the best compromise between efficiency and accuracy (Dx ’ k=3 and Dt ’ k=ð3c0Þ)
[28–30], while the growth surface discretization can be made as fine as desired. Here k is the mean free path

and c0 is the most probable molecular speed.
Collisions between particles and the growth surface are treated on an segment-by-segment basis while the

excluded volume of the DSMC cells covered by the growing surface is calculated by a Monte Carlo hit and

miss integration (subrandom [31] or even trapezoidal integration routines can also be used). Avoiding the

significant bookkeeping task of processing particle collisions with the growth surface using cells that are
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Fig. 1. Schematic of the simulation domain and boundary conditions. A cyclic (periodic) boundary condition is also applied in the z-

direction to simulate the effect of an infinite trench.
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conforming with the growth surface is achieved by assigning to each DSMC cell a number, dmin, equal to the

distance of the cell to the closest point on the deposition surface (corrected for the cell finite size). Particles

are then only checked for collisions with the deposition surface if they travel a distance greater than dmin of
the cell they originated from. An additional advantage of this approach is that it does not place a limit on

the size of the DSMC timestep as in the case of schemes that check particles only within cells which are in

contact with the surface.

The gas enters the simulation domain through an ‘‘open wall’’ boundary condition at the x ¼ 0 plane.

This boundary condition essentially matches the simulation to an infinite reservoir (x < 0) of a specified

number density, composition, average velocity and temperature. Particles entering the domain are ini-

tialized using a Maxwell–Boltzmann distribution with zero mean velocity; a Chapman–Enskog distribution

can also be used if exact coupling to an external field is required [26].
A periodic boundary condition is applied in the z-direction to simulate an infinitely long trench. The

other domain boundaries are defined by the trench and symmetry boundary conditions at the ends of the

domain. The symmetry boundary condition is applied by specularly reflecting gas particles that collide with

the symmetry boundaries. Finally, our implementation allows for an arbitrary number of gaseous species.

Gas particles in the domain are moved using the standard DSMC advection schemes. The treatment of

particles colliding with the deposition surface involves the absorption with the sticking coefficient proba-

bility Sc; the value of Sc is determined by the chemistry model as explained in Section 2.2.

In addition to the standard statistics collected in DSMC for the measurement of the usual physical
variables of interest (flow, speed, concentration, temperature, etc.), statistics are collected for the number of

particles that collide with the growth surface and the number of particles that stick to the surface. These are

later used to infer the partial pressure of each species as well as the deposition rate as a function of location

along the growth surface.
2.2. Chemistry model

Our nonlinear chemistry model follows the typical approach of controlling the reaction rate at the

surface through a sticking coefficient. In our implementation the sticking coefficient varies as a function of

space and time such that the local reaction rate is determined by the local conditions and their effect on the

chemistry model. Although similar approaches have been used in diffusive [6,7] or ballistic studies [1,4],

DSMC studies have typically been limited to a globally constant sticking coefficient.
To illustrate our implementation, let us assume that gases A and B react with a reaction rate RA given by

RA ¼ f ½T ; ppA; ppB; ppD; . . .� ð1Þ
in a reaction of the form

Aþ bB ! CðsÞ þ dD; ð2Þ
where C is the deposited solid and D is a gaseous byproduct. Here ppj is the partial pressure of species j, and
RB ¼ bRA. To implement this form of reaction in our ‘‘discrete’’ simulation we proceed by ‘‘splitting’’ the

reaction equation (2) into two equations that involve only one of the reactants, that is,

A ! c
2
CðsÞ þ d

2
D ð3Þ

and

B ! c
2b

CðsÞ þ d
2b

D: ð4Þ

The partial pressures used in (1) are typically [1,17] inferred from the average number of particles that intersect

each wall segment. Referring to one molecular species, the local number density can be approximated by
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n ¼ 4g
�c
; ð5Þ

where g is the flux of particles at the segment of interest, �c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kT=pm

p
is the mean molecular speed, k is

Boltzmann�s constant, T is the temperature and m is the molecular mass. Using the ideal gas law we can

thus relate the partial pressures to the particle flux by

pp ¼ 4gRT
�c

; ð6Þ

where R ¼ k=m is the gas constant for the particular species of interest. This equation along with (1) allows

us to find the local reaction rate at each segment which in turn allows us to calculate the sticking coefficient
from

Sc½segmentðjÞ; speciesðiÞ� ¼ R½j; i�
g½j; i� : ð7Þ

Byproduct transport is accounted for by creating byproduct particles in a ratio consistent with the splitting

of (2). For example, in Reaction (3), d=2 particles of species D are created every time a particle of species A

is adsorbed and likewise d=2b particles of D are created each time species B is consumed. The new species

are introduced in the domain at the point that the reacting particle hits the surface and they are moved for

the balance of the timestep duration after the original particle reached the segment. When the number of

byproduct species is not an integer, a byproduct particle is created with a probability equal to the fractional
part of the number of particles created.

The deposition rate is calculated by either tracking the number of particles of each species that is ab-

sorbed into the deposition surface, or from Eq. (1) via the partial pressures generated from the number of

particle collisions at each segment. The latter method gives much less noisy results particularly when the

sticking coefficient is low.

A number of assumptions have been made in calculating the sticking coefficients that may not always

hold. Most notable is the assumption of an equilibrium gas distribution that results in Eqs. (5) and (6) that

we use above. In spite of this, the method is able to give correct results in many different cases and in
particular it has been verified at high Knudsen numbers [1,17] where gas particle velocity distributions may

deviate significantly from the equilibrium distribution. This is probably because the reaction rate (1) is

really a function of the number of molecules that arrive at the surface which is subsequently converted to

partial pressure using Eq. (6). We also find that our method is insensitive to the way Eq. (2) is split as long

as the species balance is obeyed in an average sense.

2.3. Level set implementation

The basic idea behind the level set method is to regard the moving boundary as a constant-value (zero)

contour of the function /½t; x; y� which is defined on all points of the computational domain, that is at every

point our evolving curve can go. A time-dependent partial differential equation governs / and this de-

termines the movement of the contour boundary. This method was pioneered by Osher and Sethian [18]

and has been successfully used in modeling boundaries in a variety of different fields including deposition,

image processing, combustion and many others [19]. There are a number of advantages in using LS to

represent boundaries in CVD modeling, including the ability to deal with arbitrary topologies and their

considerably less challenging extension to three dimensions [19].
In two dimensions, the equation governing the evolution of / is

o/½t; x; y�
ot

þ F ½x; y�jr/½t; x; y�j ¼ 0; ð8Þ
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where F ½x; y� is a function that determines the velocity at which the boundary moves normal to itself. In the

solution, / is initialized as the distance to the closest point on the curve with a positive or negative sign

depending on whether the point is inside or outside the curve, respectively.
The level set profile simulator is linked to our DSMC code through the following steps:

1. Initialize /½t; x; y� as the signed distance function from the initial boundary curve ct and set t¼ 0.

2. Run DSMC using ct and record the flux rate at each segment.

3. Use the flux rate data to build F ½x; y�. This is called the extension problem and is explained in detail in

[14,19,20].

4. Solve for /½t þ Dtstep; x; y� (Dtstep is time between calls to DSMC) using the numerical scheme outlined in

[19,21].

5. Use a contour extracting program to get ct from /½t þ Dtstep; x; y�.
6. Increment t by Dtstep, and repeat steps 2–6 until t ¼ tfinal.
3. Results

In this section we present and discuss some of our results. Our objective is to compare our method

predictions with benchmark published results but also to investigate CVD in the transition regime for

which few results exist. A considerable amount of reliable results involving non-trivial surface chemistry
exists in the Kn ! 1 limit. We use a variety of these results to validate our work. We additionally obtain

results for low Knudsen numbers (Kn ¼ 0:03) based on the diffusion equation. This provides another in-

dependent validation for our method. Since DSMC has been proven [27] to provide solutions of the

Boltzmann equation for all Knudsen numbers, we expect validation at the two Knudsen extremes to be

sufficient.

A typical metric used in quantifying CVD is the Step Coverage defined in this paper as the ratio of the

thickness of the deposited film at the location of interest to the thickness of the deposited film on a flat

surface (typically measured outside and as far as possible from the trench – see Fig. 1). Step coverage is
particularly useful for describing the conformality of the deposited layer, in the sense that a step coverage

close to 1 denotes conformal deposition whereas a step coverage close to 0 denotes a non-conforming

deposition. The step coverage can be measured at various locations; the most common are the bottom step

coverage (b=a in Fig. 1) also typically referred to as step coverage, and the corner step coverage which

quantifies the film growth in the trench bottom corners. The trench aspect ratio (AR) is defined here as ratio

of the initial trench depth to the initial width of the trench mouth.

3.1. Validation in the Kn ! 1 limit

In this section we compare our results to previously published data obtained using an independently

developed, high Knudsen number method known as EVOLVE [22]. The chemistry model used is identical

to the one used in [13], that is, a reaction of the form

WF6 þ 3H2 ! W ðsÞ þ 6HF ð9Þ

and a rate equation of the form

RWF6 ¼ ConstantðT Þ ffiffiffiffiffiffiffiffiffi
ppH2

p ppWF6
ppbulkWF6

1þ CppbulkWF6

1þ CppWF6

 !
; ð10Þ

where C is a constant and ppbulki is a reference pressure taken to be the pressure at the top of the trench.
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Fig. 2 presents a comparison of results. The plot on the left shows the closure step coverage (bottom step

coverage evaluated when the growth surface pinches off) as a function of the deposition temperature for low

pressure Tungsten CVD. On the right we show a plot of the closure step coverage for the same model with a
variable trench aspect ratio at a fixed temperature. The comparison shows that except from the statistical

noise inherent in DSMC, the solutions are in excellent agreement, in the presence of non-trivial chemistry

and variable temperature. In Fig. 3 we compare our predictions for the step coverage versus the sticking
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coefficient for a square trench (AR ¼ 1) with those from [23]. The step coverage is evaluated when a (see

Fig. 1) is equal to half the trench depth. The analytical result indicated in the figure serves as an upper

bound for the step coverage for Sc ¼ 1:0 (see [14] for details). The comparison suggests that previous results
may not be very reliable.

3.2. Low Knudsen number results

The previous tests establish that both surface chemistry and collisionless transport are captured correctly

by our model. As stated above, DSMC solutions become computationally expensive as the Knudsen

number approaches zero. Thus, to examine the effect of collisions on transport, we devised the following
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test. We obtained a solution using our methodology for the lowest Knudsen number (Kn ¼ 0:03) we could
achieve using our computational resources. We then compared this result to a finite element solution of the

diffusion equation; the latter is expected to provide a benchmark solution for Kn ! 0. The sticking coef-
ficient was taken to be constant in both calculations.

Fig. 4 shows a comparison between our results and those obtained from the diffusion equation solution.

The top plot shows a sketch of the diffusion domain along with the location of nodes where results are

collected. The bottom plot compares the results of our DSMC model with the continuum model results.

The agreement between the two models is very good, confirming that our model does indeed capture the

physics of transport at low Kn numbers [14].
3.3. Transition regime results

We finally present and discuss some general trends that our methodology predicts for a simple square

trench in the transition regime. Fig. 5 shows a plot of the ratio of the deposition rate at the top and center of

the trench (the Flux Step Coverage) for a large number of different sticking coefficients at different values of

the Knudsen number. Clearly, the conformality of the deposited layer improves as the Knudsen number

increases at all finite values of the sticking coefficient which agrees with previous results [10]. Furthermore,

it is clear that the step coverage is a strong function of both the sticking coefficient and the Knudsen

number and no general simplification can be made that would allow us to ignore the transport effects at
intermediate Kn values.
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4. Conclusion

We have presented a methodology for modeling CVD at arbitrary Knudsen numbers. This was made
possible by using DSMC as the transport model. In this work, DSMC was endowed with a surface evo-

lution model based on level set theory. Furthermore, we presented a method to account for complex surface

chemistry which utilizes surface sticking coefficients that vary in both space and time. Our methodology

was applied to a number of problems to generate results that have been verified at both the diffusive and

ballistic limit.

This work can be extended in a number of different directions. A worthwhile extension would be the

addition of weighting factors in the DSMC formulation [2] to capture CVD reactions with low concen-

trations of reacting species. Weighting factors have been reported to cause random walks [2]; however,
some methods have been proposed to alleviate those [25]. Extension to 3D problems also poses interesting

challenges. Both current DSMC and level set implementations can be extended to three dimensions; the

computational cost of three-dimensional calculations, however, is expected to be considerable. Finally,

direct comparison with experimental data in the transition regime will be pursued.
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